
January 1998 The Delphi Magazine 17

Here Comes The Flood
by Julian Bucknall

I don’t know whether you’ve ever
used TFileStream, but maybe

when you did you’ve thought to
yourself that it’s, well, slow. I know
I have. It’s not slow in reading or
writing large buffers, but when you
are dealing with lots of small buff-
ers (eg bytes, words, booleans,
small records and the like) it’s
downright sluggish. Why? Well, in
this article we’ll be looking at
TFileStream, identifying its positive
and negative aspects, and we’ll
create a new stream descendant
that addresses the negative ones.

Family Snapshot
So, TFileStream. It’s a descendant
of THandleStream, which in turn is a
descendant of TStream, the grand-
daddy of all streams. TFileStream is
nothing really special over and
above THandleStream: it just defines
a new constructor to open a file on
disk and the destructor closes the
file. As I said, nothing too extra-
ordinary, just enough to be useful
when working with files.

THandleStream, on the other
hand, is where the nitty-gritty work
goes on. The reason that it is sup-
plied is so that you can perform
stream operations using the
handle to an already open file. It
overrides three methods from its
ancestor: Read, Write and Seek. If
you look in the Classes unit (if you
have the source code, that is, if not,
trust me) you’ll see that Seek per-
forms a seek with the file handle,
Read performs a read with the file
handle and Write performs a write
with the same handle. Pretty
simple code. But what’s wrong
with it? Nothing with its functional-
ity obviously, otherwise Borland
would have been deluged with bug
reports. However, think about
trying to read a byte from the
stream. The to the Readmethod call
gets translated to a call to the oper-
ating system to read a single byte
from the file. You are relying on the
operating system to help you out
by buffering the file somehow so

that the call to read a byte doesn’t
always translate to a call to move
the disk head and read something
off the disk platter.

Shaking The Tree
Before moving on, let us sidestep a
little and make sure that in this arti-
cle we are actually going to be
making some improvements to
TFileStream. Let us set up a test
program to profile some code that
reads from and writes to a file
stream. We’ll run it now and get
some performance data and then,
once we’ve done, we’ll run it again
to check that we have actually
made an improvement with our
work. After all, the only scientific
way to show that we have done
well is to proffer proof in the shape
of some “before and after” statis-
tics. In other words we must be
quantitative, not qualitative.
Hand-waving arguments are not
accepted here.

The test we shall make will be to
time 16000 writes of different
blocks of 40 bytes and 16000 reads
of those written blocks, both for-
wards and backwards. This test is
designed to stress the stream since
the blocks are small compared to
the disk cluster size. Note that we
could use a profiler such as Speed
Daemon to perform such tests,

however our simple timing will
suffice, as we shall see.

The code in Listing 1 creates a
new file stream, and then writes
16000 40-byte blocks to the stream
(the WriteBlock routine, not shown
here, creates a block of 40 copies
of StartChar and writes it to the
stream). We then seek to the start
of the stream, and read 16000 40
byte blocks (ReadCheckBlock, also
not shown, reads 40 bytes from the
stream and checks that each of the
40 bytes is equal to StartChar).
After this, we are positioned at the
end of the stream, and so, just for
fun, we read the same 16000 blocks
but in reverse order. I’m sure you
would agree, this would be pretty
stressful for a stream.

On my machine at home (Pen-
tium 120 MHz with 32Mb RAM,
Windows 95, Maxtor 1.6Gb drive)
the above test as a 32-bit program
took an average of 8.2 seconds
over 5 trials.

Digging In The Dirt
Having seen how quickly (or
slowly) the standard file stream
works, let us contemplate how to
improve it. The answer seems
obvious: somehow buffer up a
bunch of reads of small blocks as a
single read of many bytes and then
dole out the smaller blocks as and

S := TFileStream.Create(‘Test’, fmCreate);
try
StartTime := GetTickCount;
writeln(‘writing blocks’);
StartChar := ‘A’;
for i := 0 to 15999 do
WriteBlock(S);

writeln(‘seek to start’);
S.Seek(0, soFromBeginning);
writeln(‘readin/checking blocks’);
StartChar := ‘A’;
for i := 0 to 15999 do
ReadCheckBlock(S);

writeln(‘readin/checking blocks in reverse order’);
S.Seek(0, soFromEnd);
for i := 0 to 15999 do begin
S.Seek(-BytesInBlock, soFromCurrent);
dec(StartChar);
ReadCheckBlock(S);
S.Seek(-BytesInBlock, soFromCurrent);
dec(StartChar);

end;
writeln(‘Time taken: ‘, GetTickCount-StartTime);

finally
S.Destroy;

end;

➤ Listing 1

18 The Delphi Magazine Issue 29

when required. Similarly for
writes. In other words, we need to
buffer our file data. As it happens,
Delphi already has a buffered
stream. Luckily for me (otherwise
you would not be reading this arti-
cle) this buffered stream is embed-
ded so deeply into the internal
TReader and TWriter classes that to
extract it would take some work.
For information about TReader and
TWriter, you should look to your
Delphi help file or browse the
Classes unit. We shall not discuss
them further here.

Now, buffering reads and writes
sounds simple enough, but we
cannot be certain how our buffered
file stream will be used. It may be
that we have 1000 writes followed
by 1000 reads, but then again we
may have reads, writes and seeks
in some ‘random’ order. We cannot
count on an orderly universe for
our new stream, so the buffering
we envisage must be clever enough
to encompass reads and seeks and
writes in any order.

The design I propose is a class
that has a memory block that buff-
ers data from the file. If we want 40
bytes, for example, the class will
read a bigger chunk from the file.
The class will pass back the 40
bytes requested and store the rest
of the block in case it’s needed by a
further read. It makes sense to
make the buffer memory block
some multiple or fraction of a disk
cluster, say 4Kb or 8Kb or what-
ever. This will help maximize
throughput to the actual disk.
Going even further than this, it also
makes sense for the class to read
from (or write to) the file as if the
file were a file of records, each
record being a block in size. This
would mean that no block that we
read straddles a disk cluster
boundary and thus improving our
throughput again (remember that
disk fragmentation means that
clusters in a file may be separated
by a great acreage of disk platter).

Summing up, we shall treat the
file as a file of equal sized blocks or
pages. Each page will be sized
based on the disk cluster size and
in practice this means the pages
are 4Kb or 8Kb in size. Various
tests I’ve run have shown that

increasing the page size from 4Kb
or 8Kb to 16Kb or 32Kb does not
appreciably improve the perform-
ance of the buffered handle
stream. You can think of the buffer
as a ‘window’ on the file. We’ll be
moving the ‘window’ to and fro
over the file depending on our
position in the stream.

Internally, we need to remember
various things. Has the buffer been
written to? In other words, do we
need to write the buffer to the file
at some point? This state is deter-
mined by an internal variable
which is traditionally known as the
dirty flag. When we write data to
the buffer, we set the flag true.
When we write the buffered data to
disk, we set it false. Which page of
the file does the buffer represent?
This is simple, we must store the
starting offset of the page in the
file. Next, what about the stream
position? We must be able to calcu-
late this on demand. It will consist
of the starting offset of the page
(which we’re already storing) and
the position within the buffer, so
the latter is another value we shall
have to monitor. Finally, we need
to know how much of the buffer is
being used. Imagine creating a new
stream and writing 40 bytes to it.
Obviously, if we assume a 4Kb
buffer, we have 40 bytes of valid
data and 4056 bytes of spare space
waiting to be filled. If we close the
stream at this point, we need to
write only 40 bytes to disk, not the
whole 4Kb buffer. This determines
another variable: the number of
valid bytes in the buffer.

That takes care of some of the
internal aspects of the buffered
stream class, so let us consider the
external aspect. This is pretty
easy: we’re creating a descendant
of a TStream, so we must override
the methods that have been
declared virtual. These are:

function Read(var Buffer;
Count : Longint) : Longint;
override;
{read from stream into buffer}

function Write(const Buffer;
Count : Longint) : Longint;
override;
{write to stream from buffer}

function Seek(Offset : Longint;
Origin : Word) : Longint;
override;
{seek to a particular point
in the stream}

In Delphi 3, there is yet another vir-
tual method that needs overriding:

procedure SetSize(NewSize :
Longint); override;
{set the stream size}

With this we come to the end of our
design and it is time to start
coding. We shall descend our
TbhsBufferedHandleStream class
from TStream instead of THandleS-
tream because we shall effectively
be replacing all of THandleStream’s
methods.

And Through The Wire
Simple things first. The Create con-
structor is passed a handle (obvi-
ously!) and also the size of the
buffer required. The method does
some calculation on the passed
buffer size to round it up to the
nearest multiple of 1Kb with an
absolute maximum of 32Kb. A
buffer is then allocated from the
heap, some internal variables are
set and then the code finds out the
file size: this will be the starting
size of the stream. The Destroy
destructor frees the buffer, after
making sure that if the buffer is
dirty it is written to disk first.

The next simplest method to dis-
cuss is the Seek method. This
method is supposed to position
the stream at a given point. The
measurement is taken either from
the beginning of the stream, from
the end or from the current posi-
tion (this is the Origin parameter).
The method works out the new
position of the stream based on
the passed parameters and raises
an exception if it does not fall
within the stream’s boundaries. All
fine so far, now it gets interesting.
From this new value we can work
out the page of the file this new
position appears in. If this is the
same as the page that’s currently
in the buffer, all well and good. If it
is not then we have to mark the
page as discarded: this is simple
enough, we simply set the count of

January 1998 The Delphi Magazine 19

valid bytes as zero. This will trigger
the page to be read later on. But,
wait a minute, what happens if
we’ve just written something in
this page? Before marking the page
as discarded or “not present” we
need to write it out to the file itself.

Now, like it or not, we need to
discuss the Read and Write meth-
ods. These are easily the most
complex portions of our new
stream class mainly because of all
the housekeeping that needs to go
on. But first a point about our
implementation of them. Both
methods take a buffer and a count
of bytes to read into or write from
that buffer, and they return a count
of bytes actually read or written.
Our Readmethod will read up to the
end of the stream and will return a
correct number of bytes read. If,
however, a problem occurs when
reading from the file, an exception
will be raised rather than returning
a lesser number of bytes read.
When writing, the returned
number of bytes written will
always be equal to the amount
requested. If an error occurs whilst
writing (eg the disk becomes full)
an exception will be raised rather
than returning a lesser number of
bytes written. Also in 16-bit, I am
artificially limiting the number of
bytes that can be read or written to

less than 64Kb: I didn’t want to be
bothered with selector arithmetic
for this article.

Having made all that clear, let’s
move onto the Read method (see
Listing 2). It starts innocuously
enough by calculating the number
of bytes it will actually read, that
being the lesser of that requested
or the remainder in the stream.
Next it makes sure that the buffer
has some data in it; if not, the
method calls the bhsReadBuffer
method to read a page from the file
into the buffer. Now the going gets
a little tougher. The requested
number of bytes to read can either
be satisfied completely from the
current page in the buffer (remem-
ber that we have a variable which
holds the number of valid bytes in
the buffer), or it will span two or
more pages. If the former, then
things go pretty easily: move the
required number of bytes from the
buffer (making sure we copy from
the current position in the buffer)
to the caller’s memory block,
advance our position in the buffer
and we’re done. If the latter, then
we need to replenish our buffer at
some stage. Copy the rest of this
buffer’s worth of data over to the
caller’s memory block. Make a note
of where we are in this block. Now
advance our buffer’s starting offset
and read the next page in from the
file. But wait! What if the buffer is

dirty? In other words we have writ-
ten some new data to this page, but
it hasn’t yet been written to disk.
Well, no surprise here, we write
the current buffer to disk before
reading the next. We continue this
process until all the requested
bytes have been read from the
stream. It may mean just this one
extra buffer read or, if the amount
of data requested is large enough,
it may mean several.

Shock The Monkey
Now the Write method. Having dis-
cussed the Readmethod we can see
that the Write method (Listing 3)
works in roughly the same way.
But, that is just where I went
wrong, and where all of my bugs
were found when I was writing and
testing the code. Oh, the perils of
copy and paste! Anyway, we start
off by calculating the number of
bytes we shall write. As I said
before, we assume we shall write
all the bytes requested; if we can’t,
for example if the disk is full, we’ll
raise an exception. Next, we make
sure that the buffer has some data
in it. Here came the first bug: I was
using the count of valid bytes in
the buffer as an indication that the
buffer needed to be replenished, if
this value was zero, then we need
to read the page into the buffer.
However, it is entirely possible
that the stream is an exact number

➤ Listing 2

function TbhsBufferedHandleStream.Read(var Buffer;
Count : Longint) : Longint;

var
BufAsBytes : TByteArray absolute Buffer;
BufInx : Longint;
BytesToGo : Longint;
BytesToRead : integer;

begin
{$IFDEF Windows}
{in Delphi 1 we do not support reads over 65535 bytes}
if (Count > $FFFF) then
RaiseException(‘TbhsBufferedHandleStream.Read: ‘+
‘requested too many bytes’);

{$ENDIF}
{calculate actual number of bytes we can read - depends on
current position and size of stream as well as number
of bytes requested}
BytesToGo := Count;
if (bhsSize < (bhsPageStart + bhsPosInPage + Count)) then
BytesToGo := bhsSize - (bhsPageStart + bhsPosInPage);

if (BytesToGo <= 0) then begin
Result := 0;
Exit;

end;
{remember to return the result of our calculation}
Result := BytesToGo;
{initialise the byte index for the caller’s buffer}
BufInx := 0;
{is there anything in the buffer? if not, go read
something from the file on disk}
if (bhsByteCount = 0) then
bhsReadBuffer;

{calculate number of bytes we can read prior to the loop}
BytesToRead := bhsByteCount - bhsPosInPage;
if (BytesToRead > BytesToGo) then
BytesToRead := BytesToGo;

{copy from the stream buffer to the caller’s buffer}
Move(bhsPage^[bhsPosInPage], BufAsBytes[BufInx],
BytesToRead);

{calculate the number of bytes still to read}
dec(BytesToGo, BytesToRead);
{while we have bytes to read, read them}
while (BytesToGo > 0) do begin
{advance the byte index for the caller’s buffer}
inc(BufInx, BytesToRead);
{as we’ve exhausted this buffer-full, advance to next,
check to see if we need to write the buffer out first}
if bhsDirty then begin
bhsWriteBuffer;
bhsDirty := false;

end;
inc(bhsPageStart, bhsPageSize);
bhsPosInPage := 0;
bhsReadBuffer;
{calculate number of bytes we can read in this cycle}
BytesToRead := bhsByteCount;
if (BytesToRead > BytesToGo) then
BytesToRead := BytesToGo;

{copy from the stream buffer to the caller’s buffer}
Move(bhsPage^, BufAsBytes[BufInx], BytesToRead);
{calculate the number of bytes still to read}
dec(BytesToGo, BytesToRead);

end;
{remember our new position}
inc(bhsPosInPage, BytesToRead);
if (bhsPosInPage = bhsPageSize) then begin
inc(bhsPageStart, bhsPageSize);
bhsPosInPage := 0;
bhsByteCount := 0;

end;
end;

20 The Delphi Magazine Issue 29

of pages long. In other words, it is
entirely valid at this point for there
to be no more data in the stream.
The better test is to not only check
that the number of bytes is zero
but also that the stream size is
larger than the current page offset.

Next, we calculate the number of
bytes in the buffer that we can fill.
Again another bug appeared whilst
I was coding. In the Read routine the
number of remaining bytes is the
difference between where we are in
the buffer and the number of valid
bytes in the buffer. For writing, it is
the difference between where we
are in the buffer and the end of the
buffer. A subtle difference but
important.

On we go: again we have a
choice, there might be enough
room in the buffer to accommo-
date this particular write, or we
may have to span the write over
two or more buffers full. If the
former, we copy over the data from
the caller’s buffer, set the dirty flag
(ie the buffer now contains data
that needs to be written to the file)
and move onto the last part of the
routine. If the latter, we fill this
buffer from the caller’s and then
set the dirty flag. We write out this

➤ Listing 3

function TbhsBufferedHandleStream.Write(const Buffer;
Count : Longint) : Longint;

var
BufAsBytes : TByteArray absolute Buffer;
BufInx : Longint;
BytesToGo : Longint;
BytesToWrite: integer;

begin
{$IFDEF Windows}
{in Delphi 1 we do not support writes greater than
65535 bytes}
if (Count > $FFFF) then
RaiseException(‘TbhsBufferedHandleStream.Write: ‘+
‘requested too many bytes’);

{$ENDIF}
{when we write to this stream always assume that can write
requested number of bytes: if we can’t (eg disk full)
we’ll get an exception somewhere eventually}
BytesToGo := Count;
{remember to return the result of our calculation}
Result := BytesToGo;
{initialise the byte index for the caller’s buffer}
BufInx := 0;
{is there anything in the buffer? if not, try read a block
from file on disk - we might be overwriting existing data
rather than appending data to the end of the stream}
if (bhsByteCount = 0) and (bhsSize > bhsPageStart) then
bhsReadBuffer;

{calculate number of bytes we can write prior to the loop}
BytesToWrite := bhsPageSize - bhsPosInPage;
if (BytesToWrite > BytesToGo) then
BytesToWrite := BytesToGo;

{copy from the caller’s buffer to the stream buffer}
Move(BufAsBytes[BufInx], bhsPage^[bhsPosInPage],
BytesToWrite);

{mark stream buffer as requiring a save to disk, note this
will suffice for rest of the routine as well: no inner
routine will turn off the dirty flag}
bhsDirty := true;
{calculate the number of bytes still to write}
dec(BytesToGo, BytesToWrite);

{while we have bytes to write, write them}
while (BytesToGo > 0) do begin
{advance the byte index for the caller’s buffer}
inc(BufInx, BytesToWrite);
{as we’ve filled this buffer, write it out to disk and
advance to the next buffer, reading it if required}
bhsByteCount := bhsPageSize;
bhsWriteBuffer;
inc(bhsPageStart, bhsPageSize);
bhsPosInPage := 0;
bhsByteCount := 0;
if (bhsSize > bhsPageStart) then
bhsReadBuffer;

{calculate number of bytes we can write in this cycle}
BytesToWrite := bhsPageSize;
if (BytesToWrite > BytesToGo) then
BytesToWrite := BytesToGo;

{copy from the caller’s buffer to the stream buffer}
Move(BufAsBytes[BufInx], bhsPage^, BytesToWrite);
{calculate the number of bytes still to write}
dec(BytesToGo, BytesToWrite);

end;
{remember our new position}
inc(bhsPosInPage, BytesToWrite);
{make sure the count of valid bytes is correct}
if (bhsByteCount < bhsPosInPage) then
bhsByteCount := bhsPosInPage;

{make sure the stream size is correct}
if (bhsSize < (bhsPageStart + bhsByteCount)) then
bhsSize := bhsPageStart + bhsByteCount;

{if we’re at the end of the buffer, write it out and
advance to the start of the next page}
if (bhsPosInPage = bhsPageSize) then begin
bhsWriteBuffer;
bhsDirty := false;
inc(bhsPageStart, bhsPageSize);
bhsPosInPage := 0;
bhsByteCount := 0;

end;
end;

buffer full, advance our page offset,
see whether we can read any more
from the file, and then copy more
data from the caller’s buffer into
ours. We continue this process
until we have completed copying
data over and writing out full buff-
ers to the file. Eventually we arrive
at the last part of the routine where
we need to make sure that our vari-
ous state variables are corrected.
First we remember our position in
the buffer, then we set the count of
valid bytes in the buffer. We may
have been appending data to the
end of the stream, so we then make
sure that our stream size variable
is correct. Finally we make sure
that we are not positioned at the
end of the buffer, by writing it out if
we are. And that’s it.

The SetSizemethod is simplicity
itself. It truncates the file at the size
indicated and makes sure that the
stream position is still within the
file’s boundaries. I’ve made sure
that SetSize is available for Delphi
1 and 2 as well as Delphi 3.

In the Buffstrm unit that is pro-
vided on the disk there is one more
class: the TbfsBufferedFileStream
class. This is a descendant of the
TbhsBufferedHandleStream class
that takes care of opening and
closing a file for you and creating

the handle used by the ancestor. It
is a pretty simple class: the Create
constructor opens the file or cre-
ates it and the Destroy destructor
closes it. Much like the TFileStream
class builds on the THandleStream
class, as a matter of fact.

Big Time
And so, did all this design and
coding heartache make a differ-
ence? I reran the same test pro-
gram as before but using a
TbfsBufferedFileStream instead of
a TFileStream. The 32-bit test took
an average (over 5 trials again) of
0.43 seconds. That’s 19 times
faster. So, bam, we hit the big time.

Julian Bucknall works for Turbo-
Power Software in real life. In his
not-so-real life, his so-called spare
time, he acts a lot in local produc-
tions. He can be reached by email
at julianb@turbopower.com or
on CompuServe at 100116,1572.
The code that accompanies this
article is freeware and can be used
as is in your own applications.

Copyright © 1997 Julian M Bucknall

	Family Snapshot
	Shaking The Tree
	Digging In The Dirt
	And Through The Wire
	Shock The Monkey
	Big Time

